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Executive Summary 
Undernutrition in children is assessed from measurements of growth, primarily 
weight and height. Wasting, or low weight for height, is characterised by a loss or 
deficit of soft tissue, particularly body fat and skeletal muscle. In 2022 wasting was 
estimated to affect 45 million (6.8%) children under 5 years of age and 13% of under-
five child deaths are attributed to wasting each year. The Joint Malnutrition 
Estimation group (JME) hold a large amount of data on child wasting. However, the 
timing of surveys is not focused on capturing the main issues surrounding child 
nutrition; rather and quite understandably, it is focused on minimising the costs of 
surveys. This results in inconsistent survey periods and the timing of the surveys can 
have an impact on measures of wasting. This project explored the seasonal effects 
of wasting scores with the goal to establish if it is possible to answer the following 
question: “what would the wasting score have been had it been measured in a 
different month of that year?”. Results indicated the following: 

1. Wasting does vary seasonally in each country and that there appears to be a 
‘wasting season’; 

2. Controlling for wealth and education, the wasting scores still varied monthly; 
3. The multi-level logistic regression model provided a list of variables that are 

correlated with wasting, many of which vary seasonally; 
4. The multi-level logistic regression model was able to accurately estimate 

monthly wasting values using a year and month of survey.  
 
The results indicate that prediction is more accurate when data are available from 
multiple months and years. The study used data only from the Demographic and 
Health Survey (DHS) which limited the amount of data available and limited the 
ability to establish seasonal patterns in some countries. It is recommended that this 
study be repeated by combining SMART surveys with the DHS data to establish a 
longer and deeper time series for each country.  
 
Geospatial data had a limited but significant impact on the models. It is 
recommended that future work should establish proxy metrics for specific issues 
affected child wasting from geospatial sources. For example, the remotely sensed 
normalised difference vegetation index (NDVI) is the most commonly used 
geospatial variable in these types of models across the literature, however, in our 
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project, it was often not significantly related with wasting. NDVI is an artificially 
created index, so it cannot be mechanistically linked to wasting or food production. It 
could be used to generate additional metrics that are more directly related to 
wasting or food production and availability. For example, converting an NDVI time 
series into the number of growing days in the year and then linked this to a cropping 
calendar to see if these days were above or below a threshold for particular crops. 
Physical access to markets is also important for food supply/access. Furthermore, 
geospatial variables only focused on food production (temperature, rainfall, drought, 
and soil moisture) and did not consider food access. In future, estimating travel 
time/access to markets should also be included. 
 
Overall, the results of the SEASNUT project indicate that there are seasonal patterns 
and that statistical models can establish these patterns and estimate monthly 
wasting values using a range of covariates. Therefore, adding further data on 
wasting to build the time series/seasonal patterns along with further work on the 
geospatial covariate design should lead to a more accurate set of estimations. 
Ultimately, this could allow for monthly wasting correction factors/adjustment 
factors to be created for specific countries.  

1. Introduction 
Undernutrition in children is assessed from measurements of growth, primarily 
weight and height (or length in children under 2 years of age). While the immediate 
determinants of undernutrition of children and their mothers are diet quantity and 
quality and provision of personal care, the underlying determinants of these, (food 
and water supply, food habits and health services) ultimately depends on enabling 
economic, social, and political conditions (Figure. 1). 



 

 7 

 
Figure 1 UNICEF conceptual framework, 2020 https://www.unicef.org/documents/conceptual-
framework-nutrition (2020). 

 
The Joint Malnutrition Estimation (JME) group (UNICEF, World Health Organisation, 
and the World Bank) that releases annual estimates for child stunting, overweight, 
underweight, wasting, and severe wasting for Sustainable Development Goals (SDG) 
reporting have an established database of malnutrition variables contained within 
several sub-national level surveys. Often the timing of these surveys is focused on 
minimising the cost and time required to collect as much quality information as 
possible. This can mean that the survey collection periods are not consistent in terms 
of hunger periods and agricultural calendars. Child wasting varies inter-annually 
and can fluctuate rapidly (Johnston et al. 2021), thus the timing of the surveys can 
have a big impact on measures of the prevalence of wasting. The aim of the project 
was to identify whether we can correct for the seasonal effect in wasting scores with 
the ultimate goal to establish if it is possible to answer the following question: “what 
would the wasting score have been had it been measured in a different month of 
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that year?” To do this, the project had three main objectives:  
• Is seasonal variability an issue in the wasting scores? 
• To establish if there were “wasting” seasons in the data. 
• To investigate if monthly wasting prevalences can be estimated.  

The longer-term motivation of the research was to identify if and how wasting data 
can be corrected for the temporal inconsistencies in sampling. This could allow 
partial historical trends to be adjusted and a more accurate measurement of 
wasting prevalence that is adjusted for seasonal fluctuations.  
 

1.1 Project Scope, Objectives 
UNICEF have an established database of malnutritional variables associated with 
other demographic components contained within DHS/MICS and other sub-national 
regional/district level surveys such as Living Standards Measurement Study (LSMS). 
These data are consistent from survey to survey (or has been made so by post 
analysis) however the timing of malnutrition variables (stunting and wasting) is not 
consistent in terms of the agricultural calendar. This means that surveys have been 
conducted effectively randomly throughout the year and most surveys have 
occurred over extended periods of time. For the same country repeat sampling visits 
different households (except LSMS), so the data are not longitudinal (Table 3). As 
such, consistency is a problem for comparing between countries as well as 
establishing patterns overtime in the same country.  
 
Child wasting varies intra-annually and therefore the distribution of sampling 
directly impacts the comparability of data sets. Child wasting is highly elastic and as 
such the current methods for collecting data on Child Nutrition (wasting, stunting 
etc) are problematic. Because wasting is related to food availability and food intake, 
seasons could have a significant effect on the wasting score. The timing of a survey 
could have a significant effect on the wasting prevalences and thus using wasting 
values extracted from survey data may be biased. If seasonal variation can be 
identified and modelled, then it may be possible to (1) estimate likely wasting scores 
in non-surveyed months given the measured months and (2) adjust wasting scores 
across a year to give an average. 
 
Ideally, nutrition data would be collected every month of the year from the same 
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children to track intra and inter annual changes in child stunting and wasting. 
However, this is not possible due to time constraints and cost implications of 
conducting, processing, and analysing such datasets. Therefore, this project sought 
to identify if wasting scores could be estimated using available data from surveys 
and geospatial data such as remotely sensed satellite imagery.  

 

1.2 What is Wasting? 
The most common form of undernutrition in children is stunting, or low height for age, 
which reflects delayed bone growth, particularly of the spinal column and lower 
limbs. In 2022 stunting was estimated to affect 22.3 % of children under 5 years of 
age globally (145.1 million children: 76.6m in Asia, 63.1m in Africa) (JME 2023). Wasting, 
or low weight for height, is characterised by a loss or deficit of soft tissue, particularly 
body fat and skeletal muscle. In 2022 wasting was estimated to affect 6.8% of 
children under 5 years of age (45.0m children globally: 31.6m in Asia and 12.2m in 
Africa and 13% of under-five child deaths are attributed to wasting each year 
[Schoenbuchner et al. 2019]).  
 
Wasting is a condition that can have serious impacts on health, development, and 
the life of a child (Brown et al. 1982). It occurs when nutrient intake does not meet the 
demands for physiological and biochemical functions, growth, and capacity to 
respond to illness. When the body is deprived of food and nutrients it uses body fat, 
muscle, and other nutrients to maintain essential metabolic processes (Cahill 2006), 
resulting in weight loss and can lead to a failure to grow. Wasting can occur at any 
stage of development, including in utero (Black et al. 2013). Furthermore, for those 
children that survive severe wasting, each occurrence increases the risk of stunting, 
which is associated with a range of further problems related to development and 
future economic power. 
 
Stunting and wasting are not exclusive conditions: children can be both stunted and 
wasted (‘WaSt’) and in these children the risk of dying is considerably higher than in 
either stunting or wasting alone (Zaba et al 2022). Longitudinal studies show that 
children who are wasted are at increased risk of becoming stunted, while the 
opposite relationship is less commonly observed (Wright et al. 2021). In the four 
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target countries (Bangladesh, Burkina Faso, Ethiopia, Nigeria) in 2019, 30-40% of 
children who were wasted were also stunted. 
 

1.3 Major Determinants of Wasting 
Most information on determinants of wasting come from cross-sectional studies in 
which the direction and nature of the causal pathway cannot be determined. The 
associations and their strength may vary according to the age group of children, the 
country, region, year and month of data collection and the covariates included in the 
analysis as well as the number of children included, so only broad generalisations 
can be made. We conducted a rapid exploratory literature review of peer-reviewed 
literature since 2010, including key articles from the project team supplemented by 
searches for relevant peer-reviewed papers on child wasting in: (1) Medline; (2) Web 
of Science; (3) Google Scholar. Onward literature searches of key articles with AI 
(Artificial Intelligence) algorithms applied to key papers were also used. The aim of 
this review was to identify key determinants of child wasting with a particular focus 
on identifying seasonal drivers of wasting and geospatial proxies that could be used 
to predict wasting in statistical models.  
 

1.3.1 Non-seasonal factors related to Wasting 
Ten widely reported factors are outlined below, with illustrative examples from the 
target countries, notably Ethiopia and Bangladesh where many published studies 
have been carried out:  

1. Age. Wasting is consistently associated with younger age - for example, 
children aged 24-59 months were 44% less likely to be wasted than those aged 
0-6 months in the 2016 Ethiopian DHS (Amare et al. 2019). 

2. Sex. In most surveys boys have a slightly higher prevalence of wasting than girls 
- for example, there was an 18% higher prevalence in wasting for boys in a study 
in Bangladesh (Harding et al. 2018) and 26% higher prevalence in a study in 
Ethiopia (Dessie et al. 2019). 

3. Household wealth. Associations of wasting with lower wealth of households are 
consistently seen. In a meta-analysis of studies in Ethiopia those in the lowest 
wealth group had a 73% higher prevalence of wasting compared to those in the 
highest wealth group (Abate and Belachew 2019) while in the 2013 Nigerian DHS 
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wasting prevalence was 20.2% in the poorest group vs. 14.2% in the richest group 
(Akombi et al. 2019). However, household wealth was not consistently associated 
with wasting across South-Asia, and it may be explained more by WaSH 
conditions and Maternal BMI (Body Mass Index) (Harding et al. 2018) 

4. Maternal education. Maternal educational levels are consistently associated 
with the prevalence of wasting. Wasting has a higher prevalence in children of 
mothers without secondary education in Bangladesh (Sanin et al. 2023). In 
Ethiopia Habtamu et al. (2022) found a 2.5-fold increased risk of wasting in 
children of mothers with no formal education. In some but not all studies 
paternal education level shows a similar, if weaker, association with child 
wasting. 

5. Maternal nutrition. Low maternal BMI (weight for height) is consistently 
associated with a higher prevalence of wasting: for example, 59% higher in 
children of undernourished mothers (BMI <18.5) in Bangladesh (Sanin et al. 2023) 
or in Ethiopia albeit under flood conditions (Goudet et al. 2011). Children of 
mothers of short stature (<145 cm) in Bangladesh were found to have a 28% 
higher risk of wasting (Khatun et al. 2019). 

6. Size at birth. In Bangladesh children who were classed as having a low birth 
weight (<2500g) were 71% more likely to be wasted than others (Rahman (2015), 
while mother-perceived small size at birth was associated with 58% higher 
likelihood of being wasted in Ethiopian children Sahiledengle et al. 2022). 

7. Child feeding practices In many, though not all, studies of poor-quality infant 
feeding practices have been associated with a higher prevalence of wasting. In 
Ethiopian children, termination of exclusive breast feeding before 6 months and 
particularly before 3 months was associated with an increased risk of wasting in 
children (Nigatu et al. 2019). In another Ethiopian study, children 6-59 months 
who ate less than 4 times a day were twice as likely to be wasted (Demilew and 
Alem 2019). However, in a further study in Ethiopia, infant and young child 
feeding practices were not associated with wasting in 6–11-month-olds (Samuel 
et al. 2022). In a pooled analysis of DHS data from 32 Sub-Saharan African 
countries, children 6-23 months who reached minimum diet diversity 
(consumed items from 4 or more food groups the day previous to the interview 
being conducted, in addition to breast milk) were 13% less likely to be wasted 
(Aboagye et al. 2021) but another study using data from 9 countries, (including 
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Ethiopia and Bangladesh) found that breast feeding indicators were more 
strongly associated with wasting than complementary feeding indicators e.g. 
meal frequency and diet diversity (Jones et al. 2014). 

8. Household food security is not consistently associated with child wasting. In 
Bangladeshi children aged 6-59 months the prevalence of wasting was 8.7% in 
households with severe food insecurity compared with 4.3% in food-secure 
households (Abdullah et al. 2018) but in two studies in Ethiopia household food 
insecurity was associated with stunting and underweight but not wasting in 
similar aged children (Berra 2020; Betebo et al. 2017). 

9. Child infectious disease. Wasting is consistently and often strongly associated 
with gastro-intestinal and other infectious diseases in young children. 
Bangladeshi children with rotavirus were over 2 times more likely to be wasted 
than uninfected children (Yeasim et al. 2022), while children who had had a 
fever in the past 2 weeks were 30% more likely to be wasted than others (Sanin 
et al. 2023). A meta-analysis of studies mostly from LMICs found that children 
with Giardiasis were 2.9 times more likely to be wasted (Fauziah et al. 2022). In 
Burkina Faso child wasting was found to be strongly associated with HIV 
infection (Poda et al. 2017); children under 5 with malaria in Ethiopia were twice 
as likely to be wasted compared to a control group (Shikur et al. 2016) though in 
Burkina Faso no association between wasting and subsequent malaria infection 
was seen (de Wit et al. 2021). In a study in Ethiopia, mothers who did not have 
access to a health facility were 2.2 times more likely to be wasted (Fentahun et 
al. 2016). 

10. Water, sanitation, and hygiene (‘WaSH’). Water quality and hygiene practices, 
where measured, are frequently but not invariably associated with child wasting. 
Under 5 children in Northern Ethiopia in households with water contaminated by 
E Coli were 2.5 times more likely to be wasted than others (Usman and Gerber 
2020), but in an analysis of DHS data from 2000-2016 in Ethiopia no associations 
between water, sanitation and hygiene and wasting were detected 
(Sahiledengle et al. 2022). In Burkina Faso, children who were visibly clean and in 
compounds without chicken faeces were less likely to be wasted (Gelli et al. 
2015). Bangladeshi children in households lacking an improved water supply 
had a 78% increased risk of wasting (Harding et al. 2018). 
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1.3.2 Other factors 
Family size/structure. Short birth interval (<24 months) and large family size/birth 
order are found to be associated with an increased risk of wasting in some but not all 
studies. Rural/urban residence. Rural-urban differences in wasting prevalence vary 
widely within and between countries: some report higher prevalence in rural areas 
(Tesfaw and Dessie 2022) while others find no difference (Dessie et al. 2019; Sanin et 
al. 2023) or lower prevalence in rural areas (Chagomoka et al. 2016). Other 
associations found with child wasting in some studies include women’s 
empowerment (Heckert et al. 2019; Kisso et al. 2022; Mekonnen et al. 2021); 
displacement (Tadesse et al. 2022; Islam and Biswas 2020; Idowu et al. 2020); conflict 
(Howell et al. 2020; Dunn 2018; Delbiso et al. 2017) and particulate air pollution 
(Johnson and Brown 2014; Goyal and Canning 2018). Land tenure child wasting was 
lower in Nigerian households with formal documents showing land tenure, perhaps 
due to ability to raise credit (Ibrahim et al. 2022). 
 
1.3.3 Seasonal factors 

1. Agricultural production: High or low commercialisation of agriculture are 
associated with lower child wasting in Ethiopia (Haji 2022). Off-farm income 
was associated with improved food security and reduced child wasting in 
Nigeria, partly by boosting agricultural productivity (Kabalo and Lintjørn 2022). 
In Bangladesh, wasting decreased with increasing NDVI (taken as a proxy for 
rice production) in data from 2011 but not 2007 (van Soesbergen et al. 2017). In 
Bangladesh lower child wasting was associated with increased agriculture 
productivity (rice yield), which was associated with complementary feeding, 
rainfall, and household assets (Headey and Hoddinott 2016). 

2. Food price: In Ethiopia rising cereal prices were associated with reduced child 
stunting but not wasting (Brenten and Nyawo 2021). 

3. Drought/rainfall: Seasonal drought in Ethiopia increased risk of wasting in 
rural areas (Dimitrova 2021). In Burkina Faso, increased rainfall variability was 
associated with an increase in child weight-for-height z-score (Mank et al. 
2020). Rainfall shocks were not associated with child wasting in Ethiopia 
(Ledlie et al. 2018). Moderate, but not severe drought, was associated with 
child wasting in Ethiopia (Agabiirwe et al. 2022).  

4. Flooding: In South Asia, some evidence for an increased prevalence of 
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wasting immediately after floods, possibly linked to diarrhoea (Rodriguez-
Llanes et al. 2016). In India, frequent floods were associated with increased 
wasting one year after a large flood due to lower agriculture production 
(Rodriguez-Llanes et al. 2016), however the long-term effect of floods on 
wasting is inconsistent (Agabiirwe et al. 2022). 

5. Cyclone: There was no increase in wasting post cyclone in Bangladesh, 
probably due to effective food aid distribution (Paul et al. 2012). 
 

1.3.4. Geospatial influences on wasting. 
Table 1 shows the seasonality pathways and related geospatial variables that are 
associated with child wasting. Dry season, drought areas, and frequently flooded 
areas have higher wasting prevalence due to lower agriculture yields that tend to 
reduce food intake among children. Further, lack of labour work in the lean 
agriculture season and the absence of non-agricultural livelihoods in these contexts 
can aggravate food insecurity leading to child wasting. A recent systematic review of 
studies in drought affected areas of Africa found a positive relationship between 
climate change (rising temperature, variable rainfall) and reduction in agricultural 
yields (Asmall et al. 2021) meaning that geospatial proxies for climate change could 
also be related to wasting.  
 
Worldwide, food systems are undergoing a broad and significant transition where 
there is an increased reliance on markets for food even among the traditional food 
producers in rural areas. In this context, studies have found a positive relationship 
between improved market access and reduction in wasting. The pathway for this 
association is two-fold, one is a general improvement in food availability through the 
markets especially during the dry or lean agriculture season and the other is through 
an expansion in the diversity of foods. Increase in diet diversity among children in the 
wet and dry season assists in building immunity that leads to a reduction in 
diarrhoeal diseases. 
 
 



 

 15 

 
Table 1 Geospatial factors associated with child wasting 

Pathways associated with wasting Geospatial variables/factors Studies Context/Demography 
Lower agriculture yields reduces food 
intake 

Agriculture yield; Number of 
days between cultivation and 
harvest 

(Headey 2016); (Abdulahi 
2017); (Martin-Canavate, 
2020); (Agabiirwe 2022); 
(Kabalo 2022);  

 
Dry season; floods; 
droughts 

Production diversity (crops/livestock) 
improves food security 

Vegetation Index; Availability of 
livestock 

(Sibhatu 2015); (Cafer 
2015); (Kinyoki 2016); 
(Asmail 2021) 

Droughts 

Lower agriculture yields reduces food 
availability 

Number of markets/retail shops 
in the local area 

(Abdulahi 2017); 
(Schoenbuchner 2019); 
(Chowdhury 2020);   

Floods; Landslide 

Non-agriculture livelihoods or lack of 
dry season livelihoods reduces child 
diet diversity in areas with remote 
access to markets 

Density and types of food 
vendors in the local area; 
Access: Roads/Transport and 
their seasonal accessibility;  

(LLanes 2016) (Roba 2016) 

(Abdulahi 2017) (Cattaneo 
2021) (Hasan 2022) 
(Headey 2022) (Nahalomo 
2022) (Mohsena 2022)  

Dry or lean season; 
remote areas; food-
insecure households 

Economic growth affects diet diversity 
and helps build child immunity 
against diseases and infection 

Nightlights (Headey 2022)  

Climate change affects food 
production 

Rainfall; Temperature (Asmail 2021) Droughts 

Climate change affects diarrhoeal 
disease 

Temperature, vapor pressure (a 
measure of the specific 
humidity), climatic index for 
aridity (Tmin/vapor pressure), 
lagged monthly precipitation 

(Alexander 2013) (Waage 
2022) 

 

Dry-season and Wet 
season 
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2. Data and study locations 
The project focused four countries: Bangladesh; Burkina Faso; Ethiopia; Nigeria. The 
inconsistent timing of data collection from the DHS is demonstrated in Table 3. 
Bangladesh is the most sampled country in our dataset. It has five years in which 
surveys were conducted and for which GPS locations were collected for the village 
centres (2004, 2007, 2011, 2014, 2017). Most months have 2 separate years in which 
wasting data is available (Table 2) with the most being three (March, July, August, 
October, and November). The data is sparser in the other countries; Burkina Faso had 
almost no DHS surveys conducted between January and May in either year that the 
DHS was available. Ethiopia had no DHS survey conducted in January, February, or 
March (Table 2). This will make it more challenging to establish if there are seasonal 
patterns in wasting because the data gaps prevent a complete picture of how 
wasting varies across a year (Figure 2a). The data for Bangladesh indicates that the 
prevalence of wasting appears to be higher in May, July, and September whilst it is 
lower in June and November through to January, but this picture is complicated by 
the fact that June has a lower sample size than other months (Figure 2B).  
 

  



 

 17 

 
Figure 2 (A) Proportion of children in Bangladesh DHS Surveys that were wasted. Showing the number 

of times data are collected in each month – Most months have two data points with March, July, 

August, October, and November having three. (B) showing the z scores for wasting in each month of 

the year across all years that the DHS was conducted. The grey line (<-2) and the black line (<-3) 

indicate wasting and severe wasting, respectively. June has fewer children classed as severely wasted 

compared to other months but also has fewer samples. 
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Table 2 Number of households sampled in each DHS year for each country, by month. In Bangladesh, the DHS V survey was split over 2017 and 
2018; it was not two separate survey rounds, but the same survey conducted over 6 months but spanning the two years. In Burkina Faso, 
Ethiopia, and Nigeria there are clearly some months where no data was ever collected within the DHS 

Country Year Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Total 

Bangladesh 

2004 1,134 691 861 824 550 - - - - - - - 4,060 
2007 - - 301 893 807 602 596 178 - - - - 3,377 
2011 - - - - - - 1,154 774 903 1,097 747 527 5,202 
2014 - - - - - 105 1,301 1,276 1,031 863 140 - 4,716 
2017 - - - - - - - - - 211 1,414 1,213 2,838 
2018  1,081 773 386          2,240 

Burkina Faso 
2003 - - - - - 47 490 1,092 1,506 1,815 566 - 5,516 
2010 5 - - - 19 31 338 785 857 724 927 525 4,211 

Ethiopia 

2000 - - - - - 1,372 1,567 1,644 990 88 - - 5,661 
2005 - - - - - - - 304 827 731 656 142 2,660 
2011 - - - 468 1,344 1,519 1,753 1,224 - - - - 6,308 
2016 - - - - 382 1,271 1,374 1,360 1,255 158 - - 5,800 

Nigeria 

2003 - - 255 269 424 480 626 78 - - - - 2,132 

2008 - - - - - 729 3,231 3,352 2,100 1,312 21 - 
10,74
5 

2013 - 510 3,336 4,515 4,149 266 - - - - - - 12,776 
2018 - - - - - - - 231 1,492 1,427 1,322 1,007 5,479 
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2.1 Covariate Selection for modelling Wasting 
The rapid review informed the identification of covariates for use in statistical 
modelling. These were extracted from the DHS survey data and open-source 
geospatial databases. For the DHS data, covariates were dropped if: 

• A covariate was not available in each year of survey (i.e. questions were 
dropped in later surveys or new questions appeared in later surveys); 

• Covariates had high levels of correlation with other covariates deemed more 
suitable for the models (i.e. variables on household asset ownership were 
dropped as these were included already in the DHS Wealth Index variable); 

• Covariates that did not appear in all countries (i.e. when child is sick 
respondent can decide to get medical treatment was not asked in most 
surveys); 

• Variables had a high number of NoData, NA or Don’t Know answers.  
For a full breakdown of the process followed to select covariates see Appendix 1.  
 

2.2.1 DHS Covariates Used in models 
• Respondent Education: provides education level of the respondent as no 

education (coded as 0), primary (1), secondary (2) and higher education (3).  
• Partners' Education: this variable explains the educational achievement of the 

partner and was categorized as none, incomplete primary, complete primary, 
incomplete secondary, complete secondary, higher education, and unknown 
level of education.  

• Religion: category 1 was generally the most common religion within the 
country and was used as the reference category in subsequent models.  

o For Bangladesh, codes were: Islam (1*), Hinduism (2), Buddhism (3), 
Christianity (4) and Other (6); 

o For Burkina Faso, the codes were: Catholic (1*), Protestant (2), Muslim 
(3), Traditional (4), Sans religion/Aucune (5) and Others (96); 

o For Ethiopia, codes were: Orthodox (1*), Catholic (2), Protestant (3), 
Muslim (4), Traditional (5) and other (6/96); 

o For Nigeria, the codes were: Catholic (1*), Other Christian (2), Islam (3), 
Traditionalist (4) and Other (96); 

o Code 0 represented no religion as code 0.  
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• *Note that each religion categorised at 1 was used as the reference value in 
subsequent models.  

• Frequency of listening to radio: This variable was categorized into: Not at all 
(0), everyday (1), at least once a week (2) and less than once a week (3).; 

• Occupation of Respondent: This variable explains whether the respondent 
was currently working or not and was responded as yes or no; Partner's 
Occupation: partner’s occupation groups. Country specific categories; 

• Number of Women in Household: this variable was coded as 1 for 1 woman in 
household otherwise >=2 (if number of women is >=2 in the household).  

 

2.2 DHS GPS Repositioning  
DHS GPS points are collected in a central location for each surveyed 
settlement/cluster. To protect the confidentiality of respondents, these points are 
displaced before being published on the DHS website. The displacement applied is 
between 0 and 2 km in Urban areas and 0 and 5 km in rural areas. However, 1% of 
points are moved up to 5 km in urban areas and up to 10 km in rural areas (Burgert 
et al. 2013). Most points are displaced over a small distance from their original 
locations (Brumhead 2020). Whilst protecting respondent confidentiality well, this 
approach can affect the use of the data for spatial analyses. Part of the aim of the 
SEASNUT project was to identify if the seasonality of wasting could be predicted using 
geospatial data proxies. To test this, we extracted metrics from the remotely sensed 
data to act as proxies for seasonal factors. However, these proxies have to be 
located within the same area as the household survey data was collected to ensure 
that the geospatial proxies are representative of the landscape characteristics 
surrounding the surveyed locations. Some geospatial variables are capturing 
heterogeneous biophysical parameters that will vary over small spatial areas such 
as agricultural productivity. Some variables are less heterogeneous such as rainfall 
and temperature and so the displacement from original location to published 
location is less problematic. The geospatial data that we shortlisted for use in the 
modelling ranged in spatial resolution from 250m to 55.5km and therefore it was 
necessary to relocate the GPS points to a known settlement.  
 
The DHS recommends aggregating or averaging all geospatial data over a 5-10km 
area around the displaced points. However, Grace et al. (2019) indicated that 



 

 21 

manually moving the point back to the nearest settlement viewed on satellite base 
maps may be an adequate approach for the majority of places which has been 
used in Wahab and Hall (2023). We developed a model in ESRI ArcPro (ESRI 2022) that 
relocated (snapped) a DHS cluster GPS point to the nearest Open Street Map (OSM) 
place point. The script snaps only rural DHS points to the nearest OSM place (village 
or town as Urban is removed), the initial search radius around the displaced point 
was 5 km as this is the maximum distance that 99% of rural DHS points are displaced 
by (Burgert et al. 2013). However, if no OSM place point could be found within 5km the 
model expands the search radius to 10Km. Finally, if no place point can be found 
within 10km then the DHS point was manually assigned using the high-spatial 
resolution base maps available in ArcPro. The model produced interim outputs that 
can be used to identify the distances that points have been moved (Figure 4). 

 
Figure 3 Each DHS point (black dot) was linked to the nearest rural OSM settlement point (green dot) 
within a 5 km radial buffer (blue area) 

 
The approach is limited by the quality of OSM data and as such checks should be 
made in each country. For example, OSM data does not provide settlement locations 
for every settlement in a country; data can be of dubious categorisation, and often 
the settlement points are unevenly spread across a county (Figure 5b). The DHS 
random location can introduce, in a few cases, a scenario where multiple DHS 
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clusters can snap to the only available OSM place point within the search distance. 
Our model does not currently reposition points that are relocated to the same OSM 
settlement location. 
 

 

Figure 4 Example of 2018 DHS data snapped to OSM in Bangladesh. (A) DHS locations, (B) OSM 
locations, some places have dense settlement points, but others have sparse to none, and (C) the 
“snap to nearest” OSM visualized by red line. 

 

2.3 Geospatial data preparation 
The results of the rapid review informed the identification of a series of geospatial 
data that could act as proxies for seasonal drought, rainfall variability, and 
agricultural productivity (Table 3). The Dartmouth flood data set was explored but 
the structure of the data was not appropriate for this study and required in-depth 
further analysis. Drought can be a key cause of food insecurity but relying on 
weather data alone is not sufficient for drought monitoring, especially in developing 
countries where weather stations are scattered and incomplete. Therefore, we 
identified proxies from remotely sensed satellite data; the Normalised Difference 
Vegetation Index (NDVI), Rainfall, Soil Moisture, Land surface temperature and the 
SPEI drought index (Table 3).  
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Table 3 Summary of EO (Earth Observation) dataset sources for assessment impacts of drought on 
child wasting 

Indicator Data 
source 

Spatial 
resolution 

Temporal 
resolution 
available 

Temporal 
resolution 
selected 

Length of 
time 
series  

Link to source 

 EO drought indicators 
Crop/veget
ation 
condition 
(NDVI) 

MODIS 
(MYD13Q
1.6) 

250 m 16-
day/mont
hly 
aggregat
e 

monthly 2000 – 
present 

https://earthdata.nasa.g
ov/ 
https://earlywarning.usg
s.gov/  

Rainfall CHIRPS 0.050 (5.5 
km) 

Pentadal/ 
monthly 

monthly 1981-
present 

https://data.chc.ucsb.ed
u/products/CHIRPS-2.0/ 
https://earlywarning.usg
s.gov/fews/datadownloa
ds/Global/CHIRPS%202.0 
ftp://chg-
ftpout.geog.ucsb.edu/pu
b/org/chg/products/CHI
RPS-2.0/  

Soil 
moisture 

GLDAS-
SM 

0.250 

(27.75km
) 

Monthly monthly 2000-
present 

https://disc.gsfc.nasa.go
v/datasets/GLDAS_NOAH
025_M_2.1/summary  

Land 
surface 
temperatur
e 

GLDAS-
SM 

0.250 

(27.75km
) 

Monthly monthly 2000-
present 

https://disc.gsfc.nasa.go
v/datasets/GLDAS_NOAH
025_M_2.1/summary  

Drought 
index 

SPEI 0.50 

(55.5km) 
1-, 2- to 
48- 
month 
time scale 

3 monthly 
(agricultu
ral 
drought) 

1901-2018 https://spei.csic.es/spei_
database/#map_name
=spei01#map_position=1
415 

  

2.3.1 Rainfall 
Rainfall is a key input for agricultural growth and remotely sensed estimates of 
rainfall provide an outlook of one of the climatic drivers of vegetation growth 
(Rembold et al., 2019). Agriculture is a significant contributor to livelihoods, incomes, 
and food supply in rural areas of many LMICs. Rainfall was hypothesised to be 

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
https://earlywarning.usgs.gov/
https://earlywarning.usgs.gov/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://earlywarning.usgs.gov/fews/datadownloads/Global/CHIRPS%202.0
https://earlywarning.usgs.gov/fews/datadownloads/Global/CHIRPS%202.0
https://earlywarning.usgs.gov/fews/datadownloads/Global/CHIRPS%202.0
ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary
https://spei.csic.es/spei_database/#map_name=spei01
https://spei.csic.es/spei_database/#map_name=spei01
https://spei.csic.es/spei_database/#map_name=spei01
https://spei.csic.es/spei_database/#map_name=spei01
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related to wasting because too much or too little rainfall can lead to crops not being 
planted at all or failing to produce expected. 
 
We used the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) 
to estimate rainfall at 0.05° spatial resolution (approximately 5.6 km at the equator). 
CHIRPS is a 30+ year freely available global rainfall estimate (RFE) dataset which 
incorporates satellite imagery (thermal infrared and passive microwave) with in-situ 
station (gauge) data to create gridded rainfall time series. Given the consistency in 
data acquisition over a long period of time, CHIRPS RFE data is well suited for 
meteorological monitoring, as well as examining how rainfall affects agricultural 
crop production and forage availability for livestock. For the SEASNUT project we used 
monthly estimates of rainfall and converted these into anomalies using the z-score 
approach described in section 2.5 below. The monthly anomalies were categorized 
in the following way: 

• -2 to 2 – classed as normal rainfall conditions; 
• > -2 classed as drier than normal; 
• > 2 classed as wetter than normal. 

The rainfall anomaly is again calculated with local context in mind comparing the 
rainfall for a particular month and pixel to the long-term average for that particular 
pixel. We chose to use monthly rather than 3- monthly average for the rainfall since 
we used the 3-month time horizon for the drought calculations (section 2.4.3)  
 

2.3.2 Soil moisture (SM) and Land Surface Temperatures (LST) 
Soil moisture and surface temperature can be acquired using active and passive 
microwave satellite sensors. Soil moisture availability affects changes in crop growth 
(phenology) and is therefore considered an important indicator when assessing 
seasonality in agricultural areas. The Global Land Data Assimilation System (GLDAS) 
soil moisture and surface temperature datasets are gridded with a spatial resolution 
of 0.25 x 0.25-degree spatial resolution (approximately 27.75km at the equator) and 
monthly temporal resolution. The GLDAS soil moisture product can be used to 
characterize the variability of soil moisture at a regional scale and its ability to 
capture anomalies compares favourably with other proxies such as the standardized 
precipitation index (Pennemann et al. 2015). Since GLDAS requires lower 
computational time than the standardized precipitation index (Rodel et al. 2004) we 
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chose to utilise this indicator. Furthermore, the global availability at a relatively fine 
resolution (both temporal and spatial) and its integration of satellite with ground-
based data sources make this dataset well suited for drought monitoring. In the 
SEASNUT project we used the GLDAS Land Surface Model version 2 soil moisture 
dataset.  

 
2.3.3 Drought  
Rainfall is not the only factor affecting water availability as temperature drives 
evapotranspiration rates which affect water availability in a particular location. 
Drought indicators that are solely based on precipitation are less sensitive than 
those based on precipitation and temperature (Tirivarombo et al. 2018, SPEI 2020). 
The Standardized Precipitation and Evapotranspiration Index (SPEI) combines long-
term time series information on rainfall and temperature to generate an index that is 
more sensitive in identifying droughts than a simple rainfall index (Pei et al., 2020; 
Bezdan et al., 2019). The SPEI accounts for local context when identifying drought 
conditions and the values of the SPEI can be categorized as shown in Table 4. 
 

Table 4 Categorization of Standardized Precipitation and Evapotranspiration Index (SPEI) based on 
values in Wang et al, 2021 

Categorization (based on Wang et al. 

2021) 

SPEI Value 

Extremely Wet ³ 2 

Severely Wet ³ 1.5 and <2  

Moderately Wet ³ 1 and <1.5  

Mildly Wet ³ 0.5 and <1 

Normal ³ -0.5 and < 0.5 

Mild Drought > -1 and £ -0.5 

Moderate Drought > -1.5 and £ -1 

Severe Drought > -2 and £ -1.5 

Extreme Drought £ -2  
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SPEI provides long-term, robust information about drought conditions at the global 
scale, with a 1-degree spatial resolution and a monthly temporal resolution. There 
are a variety of time-horizons that can be used to assess the SPEI allowing it to be 
used for identifying short/meteorological droughts (one month), agricultural 
droughts (3 months), and hydrological droughts (12 months) (Vicente-Serrano et al. 
2010) to long-term (up to 48 months) drought episodes. We used the 3-month time 
horizon as this is used to identify ‘agricultural droughts’. Thus, if a monthly value of 
SPEI is -2 this indicates that there was an extreme drought during the 3 months 
leading up to the date in-question for that particular pixel (i.e. if April 2010 has an SPEI 
value of -2 this means that February, March, and April 2010 was a drought period). 
We include SPEI in the analysis because we hypothesise that wasting will be 
associated with dry and wet conditions through damage to crops and reduced 
harvests. This results in less food being available in rural markets and thus less food 
to eat and lower incomes, meaning less food can be bought by those reliant on 
agricultural production for their livelihoods and/or food intake.  
 

2.3.4 Vegetation condition - Normalized Difference Vegetation Index (NDVI) 
Time series of satellite-based biophysical indicators such as vegetation greenness 
can provide information about vegetation status, including crops and forage over 
large areas (Rembold et al., 2019). Optically derived NDVI data has been used as a 
proxy for vegetation cover, greenness, and vigour with applications in crop and 
rangeland browse or forage condition assessment and monitoring, and more 
recently gaining significance in drought monitoring at both regional and global 
scales. NDVI converts the spectral bands into a unit-less measure (Rouse et al., 1974). 
NDVI is computed as a normalized difference of the near infrared (NIR) and the red 
reflectance because healthy green leaves have a high level of reflectance in the NIR 
band and a low level of reflectance in the red band. The index values range between 
-1 and 1 with vegetated surfaces having a positive value and it can be measured by 
any sensor that measures in these spectral bands (red and NIR). The MODIS NDVI 
product version 6 used in the SEASNUT project, available in Google Earth Engine. 
These are generated every 16 days at a spatial resolution of 250 m. The data were 

https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mod13q1v006/
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aggregated to the DHS cluster for each month of the year of the DHS survey. We 
extracted the NDVI value for the following time horizons: 

• Month of the survey; 
• Average of the 2 months leading up to the survey; 
• Average of the 3 months leading up to the survey. 

The NDVI was assumed to have a relationship with agricultural productivity, whereby 
higher levels of greenness could indicate a higher harvest. However, given that 
Bangladesh has a large reliance on Rice Padi it was likely that this may not be the 
case and so we tested these in the model. None of the NDVI data were significant, 
therefore, it was dropped from the model in Bangladesh, and we did not process the 
data for Burkina Faso, Ethiopia, or Nigeria. Since vegetation is affected by rainfall, soil 
moisture, and temperature it was felt that these measures already included in the 
models were more reliable geospatial variables to use as are more directly linked to 
agricultural productivity than vegetation greenness.  
 

2.4 Earth Observation data processing  
Each of the datasets were processed at the pixel level before being aggregated to 
the DHS Cluster. For the rainfall, soil moisture, and surface temperature, the data 
were subset to the years 2000 to 2019, providing 19 years of data. The z-score was 
calculated for each of these (except the SPEI). Z-scores are deviations of observed 
monthly and seasonal indicators from long term averages (LTAs), also known as 
anomalies. The whole process, applicable in computing monthly anomalies for the 
EO drought indicators, can be summarized in 2 basic steps: 

1. Temporal aggregation to a harmonized temporal resolution of monthly 
and seasonal indicators; 
2. Normalization through computation of z-scores to compare the 
condition at the time (month/season) under investigation to long term 
average, or distance from mean. This shows how many standard deviations 
a monthly or seasonal observed score is below or above the long-term 
average (LTA) Negative z-Scores show below-normal conditions, while 
positive values depict above-normal conditions.  

A Python script was developed to automate the extraction of the sum of the values of 
the Standardised Precipitation & Evaporation Index (SPEI), Soil Moisture (SM), Surface 
Temperature (ST) and Rainfall Estimates. Rasters were converted to polygons and 
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then intersected with buffers around each repositioned DHS cluster point.  
 

2.5 Multilevel Modelling of Child Wasting at the cluster level  
DHS surveys for every year with GPS data available were pooled for each country 
(Bangladesh, Burkina Faso, Ethiopia, Nigeria) to examine if there was a seasonal 
pattern in the wasting prevalence and the extent to which geospatial covariates 
could be used to estimate the wasting prevalence. The aim was to investigate the 
individual, household, and cluster level variables that affect the wasting among 
children under five years of age, and whether the geospatial factors can explain the 
variation in wasting, severe wasting, and Z-scores of wasting among children under 
five years of age.  
 

2.5.1 Shortlisting of covariates for the models 
The selection of covariates from the DHS dataset, which may exert an influence on 
the prevalence of wasting among children under the age of five, was carried out 
through a comprehensive literature review and our domain expertise giving us a 
comprehensive list of covariates (Section 2.2.1). Thereafter, a correlation analysis was 
conducted on the selected covariates to identify and subsequently eliminate 
variables exhibiting a high degree of correlation with each other. This was done to 
mitigate the issue of multicollinearity in the multilevel regression models.  
 
Covariates demonstrating substantial correlation (correlation coefficients exceeding 
± 0.7) were investigated further and the covariate that had the highest number of 
missing values or that were deemed of lower importance from the literature were 
removed from further analysis. For example, the covariates pertaining to mosquito 
bed nets were excluded due to their absence in the surveys across all four countries. 
The variable representing the total number of household members was omitted 
given its high correlation with the count of de jure members. In the domain of religion 
and ethnicity, the ethnicity variable was removed because it was highly correlated 
with religion and religion had a higher number of reported cases than ethnicity. 
Covariates concerning the type of toilet facility and those associated with the 
number of livestock were excluded from consideration, as they were already 
factored into the calculation of the wealth index. Covariates pertaining to 



 

 29 

respondents' ownership of a mobile phone and their internet usage were removed 
due to their presence only in the most recent survey years. 
 

2.5.2 Model description 
We used a linear model that takes into account individual, household, and cluster 
level variables to predict z-scores, wasting, and severe wasting where the former 
outcome is continuous while the latter two outcomes are binary. We modelled these 
variables as fixed effects (i.e., the respective coefficients are explicitly estimated) and 
also allowed cluster specific variations in the model. Since there were a high number 
of clusters in most countries, we modelled the cluster specific variation as a random 
effect (i.e. we do not explicitly estimate the cluster level coefficients but their mean 
value and standard deviation over all clusters). We also assumed that the outcomes 
(wasting, severe wasting, and Z-scores of wasting) could vary over months, and we 
modelled this variation as a fixed effect. Similarly, we assumed that the outcomes 
could vary over years, and we modelled this variation as another fixed effect. 
Detailed model descriptions are available in Appendix 4. We created 3 separate 
multi-level models:  

1. The WHZ-score wasting values; 
2. The prevalence of wasting; 
3. The prevalence of severe wasting. 

We included certain covariates at the household level, others at the child level, and 
others at the cluster level to account for the fact that these covariates vary at 
different spatial scales. For example, each child within a household will have a 
unique age, birth interval, breastfeeding duration, and wasting score. But most 
children within a household will have the same parents and therefore the respondent 
education, religion of mother, literacy of respondent will be the same for most 
children in a household whilst differing between households. All geospatial variables 
were the same for each cluster because they were extracted for the buffer zone 
around the GPS cluster location; the final variables that were considered for each 
model are listed in Table 5 and Table 6.  
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Table 5 Household level features included in the models for each country , those marked as ‘N’ had 
missing data and were not considered in the models.  

Household level feature Bangladesh 
Burkina 

Faso Ethiopia Nigeria 
Respondent Education Y Y Y Y 
Partners' Education Y Y Y Y 
Religion of mother Y Y Y Y 
Frequency of radio listening Y N Y Y 
Occupation of mother Y Y Y Y 
Number of women in the household Y Y Y Y 
Literacy N N Y Y 
Wealth Index quintile of the 
household Y Y Y Y 
Household in urban or rural area N Y Y Y 
Sex of head of household Y Y Y Y 

 

Table 6 Child level features included in each model, those marked as ‘N’ had missing 
data and were not considered in the models. 

Child level feature Bangladesh 
Burkina 

Faso Ethiopia Nigeria 
Birth order Y Y Y Y 
Breastfeeding duration Y N N N 
Age of child Y Y Y Y 
Sex of child Y Y Y Y 
Preceding birth interval (months) N Y Y Y 
Number of entries in immunization 
roster Y Y Y Y 

 
All models were run for a maximum 10,000 iterations with a tolerance of 0.00001 was 
used for declaring convergence. For each outcome variable, we generated three 
models: 

• with only DHS covariates including individual, household and cluster level 
covariates; 

• with only geospatial covariates;  
• a full model with both DHS covariates and geospatial covariates. 

 



 

 31 

NDVI was included in the full model of Bangladesh for all three outcomes as 
described above (WHZ score model, wasting model and severe wasting model) in 
different forms to understand the role of NDVI in determining the wasting prevalence. 
NDVI was treated differently to other geospatial covariates for two reasons: (1) it is 
less directly linked to food production than others as it is a unitless index that shows 
vegetation vigour rather than a particular input required for plant growth 
(temperature, rainfall, soil moisture); (2) it is commonly used in studies like SEASNUT 
but in different ways. Thus, we wanted to see if (1) NDVI was correlated with wasting 
and (2) if the correlation differed depending on the way that NDVI was treated. The 
NDVI was aggregated to the cluster in the following ways: 

• lag1 month (BD-lag1) NDVI value one month prior to the DHS month of data 
collection; 

• lag2 (BD-lag2) - NDVI value two months prior to DHS the month of data 
collection; 

• lag3 (BD-lag3) NDVI value three months prior to the DHS month of data 
collection; 

• average of lag two months (BD-avglag2) i.e., average of two months of NDVI 
prior to the month of data collection for child anthropometric indices – 
typically four to five individual NDVI values per pixel; 

• average of lag three months (BD-avglag3) i.e., average of three months of 
NDVI prior to the month of data collection for child anthropometric indices. 
Typically, six to seven individual NDVI values per pixel.  

 

2.6 Actual versus Predicted Wasting Prevalence 
To identify if the model can be used to estimate wasting prevalence we calculated 
prevalence as:  
 

𝑣𝑐𝑙,𝑚𝑚−𝑦𝑦 =  
𝑁𝑤𝑎𝑠𝑡𝑒𝑑,𝑐𝑙,𝑚𝑚−𝑦𝑦

𝑁𝑡𝑜𝑡𝑎𝑙,𝑐𝑙,𝑚𝑚−𝑦𝑦 
  

 
This prevalence is then modelled as in [M3] and [M3’]. 
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3. Results 
Overall, the models with the lowest AIC values across all countries were those 
containing both DHS and geospatial covariates (Table 7). The geospatial only model 
outperformed the DHS only model in Ethiopia for wasting and severe wasting but in 
Nigeria the results were more varied. In all cases the difference is between all of the 
models is relatively small.  
 
The marginal and conditional r2 values indicate that the WHZ-Score models all have 
a limited ability to explain the variance in the observed values. However, they do 
indicate that for both Nigeria and Ethiopia the geospatial only model is the worst 
performing model which is to be expected as it contains only information on NDVI, 
rainfall, drought and soil moisture which is expected to only explain a small amount 
of the child nutrition patterns seen in the data.  
 
The best performing models were selected based on model performance statistics - 
conditional R squared, marginal R squares, (Akaikes Information Criteria) AIC and 
Bayes Information Criteria (BIC) values for WHZ score models and AUC, F1-Score 
(threshold of 0.2), and AIC and BIC values for wasting and severe wasting models. 
Finally, only the covariates which were found to be significantly correlated to the 
output in the best performing models were used in a final model for interpreting 
covariate relationships. The covariates month and year were included in all the 
models irrespective of whether they were significantly affecting the output or not. The 
model performance statistics for models with all the significant covariates including 
month and year are presented in Table 7. Further, from the analysis of BD models it 
was observed that NDVI did not significantly affect the output in any of the 
Bangladesh models thus, NDVI was not included as a covariate for Ethiopia, Nigeria, 
and Burkina Faso.  
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Table 7 Model Performance statistics for WHZ-score, wasting and severe wasting models without 
geospatial covariates, with only geospatial covariates and with all covariates including geospatial  

Region  Model  AUC   

F1-Score 
(threshold 
of 0.2)  

Conditional 
R squared  

Marginal 
R squared  AIC  BIC  

Bangladesh  
(WHZ-score 
Model) 

No Geo Model - - 0.097 0.071 67717.6 68030.3 
Only Geo Model - - 0.058 0.007 54580.3 54673.8 
Full Model with Geo - - 0.096 0.070 67750.9 68071.6 

Bangladesh  
(Wasting 
Model) 

No Geo Model 0.690 0.319 - - 18043.8 18348.5 
Only Geo Model 0.719 0.286 - - 15213.9 15299.6 
Full Model with Geo 0.690 0.319 - - 18055.9 18368.6 

Bangladesh 
(Severe 
Wasting 
Model) 

No Geo Model 0.748 0.029 - - 5879.3 6176.0 
Only Geo Model 0.873 0.039 - - 5147.4 5217.6 

Full Model with Geo 0.842 0.052 
- - 

5836.1 6084.7 

Ethiopia 
(WHZ-score 
Model) 

No Geo Model - - 0.098 0.049 66676.4 67064.7 
Only Geo Model - - 0.068 0.003 65780.6 65914.8 
Full Model with Geo - - 0.095 0.050 64988.3 65438.5 

Ethiopia  
(Wasting 
Model) 

No Geo Model 0.749 0.382 - - 15379.7 15760.1 
Only Geo Model 0.754 0.256 - - 15478.4 15604.8 
Full Model with Geo 0.745 0.371 - - 14840.5 15282.9 

Ethiopia  
(Severe 
Wasting 
Model) 

No Geo Model 0.750 0.029 - - 6728.6 7053.5 
Only Geo Model 0.858  - - 6716.8 6811.6 

Full Model with Geo 0.825 0.080 
- - 

6438.3 6825.4 
Nigeria  
(WHZ-score 
Model) 

No Geo Model - - 0.124 0.053 114740.9 115166.5 
Only Geo Model - - 0.097 0.006 112667.2 112792.0 
Full Model with Geo - - 0.124 0.055 112053.2 112519.2 

Nigeria  
(Wasting 
Model) 

No Geo Model 0.779 0.424 - - 23993.2 24410.5 
Only Geo Model 0.770 0.399 - - 24390.3 24506.8 
Full Model with Geo 0.779 0.425 - - 23414.2 23872.0 

Nigeria  
(Severe 
Wasting 
Model) 

No Geo Model 0.78 0.228 - - 14220.1 14645.8 
Only Geo Model 0.833 0.256 - - 14215.8 14315.6 

Full Model with Geo 0.823 0.273 
- - 

13675.8 14141.9 
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3.1 Bangladesh 
 
In Bangladesh, the WHZ-Score models indicated a complex relationship between 
child age and wasting. Wasting WHZ-scores were generally lower in children aged 
12-23 months compared to 0-11 months indicating that Wasting prevalence was 
higher in children between 12 and 23 months than those between 0 and 12 months. 
Wasting prevalence was lower in children between 24 and 47 months (Figure 7). This 
corresponds to the wider understanding of Wasting for age as it generally starts low 
during early months of life, increases initially after weaning, and then decreases to 
almost zero by the age of 5. However, in Bangladesh, increased once again in the 
oldest age group (48-59 months) which is not expected. However, the observed data 
in Bangladesh clearly showed that in 2011, 2014 and 2017 the percentage of children 
wasted was high in younger age groups, reduced in the middle age groups and 
increased once again in the oldest age group (Table 8). 
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Table 8 Observed Wasting percentages per age group in Bangladesh showing the unexpected result of 
the oldest age group (4) corresponding to children aged between 47 and 59 months having higher 
rates in 2011, 2014 and 2017 

Year Age 
(Years) 

Total no. of 
Children 

No. of 
Wasted 
Children 

No. of 
Severely 
wasted 
Children 

Wasting 
(%) 

Severe 
Wasting 
(%) 

2004 0 816 136 41 16.66667 5.02451 
2004 1 803 168 38 20.92154 4.732254 
2004 2 818 112 33 13.69193 4.03423 
2004 3 831 95 13 11.43201 1.56438 
2004 4 792 96 10 12.12121 1.262626 
2007 0 675 131 36 19.40741 5.333333 
2007 1 673 168 35 24.96285 5.200594 
2007 2 682 121 15 17.74194 2.199413 
2007 3 660 93 17 14.09091 2.575758 
2007 4 687 105 7 15.28384 1.018923 
2011 0 1034 155 51 14.99033 4.932302 
2011 1 955 165 41 17.27749 4.293194 
2011 2 957 145 32 15.15152 3.343783 
2011 3 1153 200 49 17.34605 4.249783 
2011 4 1103 188 37 17.04442 3.354488 
2014 0 915 172 44 18.79781 4.808743 
2014 1 986 180 45 18.25558 4.563895 
2014 2 949 128 21 13.48788 2.212856 
2014 3 929 119 19 12.80947 2.04521 
2014 4 937 150 20 16.00854 2.134472 
2017 0 1126 90 22 7.992895 1.953819 
2017 1 1068 89 22 8.333333 2.059925 
2017 2 976 77 18 7.889344 1.844262 
2017 3 938 85 10 9.061834 1.066098 
2017 4 970 100 4 10.30928 0.412371 

 
 

Wasting was higher in children who had suffered diarrhoea in the 2 weeks preceding 
the survey, if they were male, if their mother was underweight and if their mother had 
lower education. Compared to the poorest households (comparison) wasting was 
lower in each wealth quintile (Figure 5).  
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None of the geospatial covariates showed a significant association with WHZ score 
(Figure 5) in the full model (including DHS and geospatial covariates). However, the 
model with only geospatial variables showed significant relationships between pre-
ndvi-lag1 month, soil temperature and SPEI with WHZ scores (Appendix 6). The WHZ 
scores improved with an increase in pre-NDVI-lag1 month values, and as the SPEI 
shifts from moderately wet to mildly wet and drier conditions. The seasonal variation 
in the WHZ scores was visible when comparing between months of data collection. 
Wasting was highest in July and lowest in February in Bangladesh when January was 
used as the reference month. But the interpretation of the results means that 
compared to January, the wasting started increasing as the year progresses with the 
worst months being July to September but better (i.e., less wasting) in October, 
November, and December. The WHZ score model with only DHS covariates without 
any geospatial covariates is provided in Appendix 6. 
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Figure 5 Bangladesh WHZ score for the best performing model. For the WHZ-score model, a variable 
was associated with increased wasting if it was to the left of the 0.0 line. Wasting is higher the further to 
the left of the plot a variable appears 

 

The likelihood of being wasted and severely wasted was lower in ages over 11 months 
with the lowest likelihood of being severely wasted being in the oldest two age 
groups which is as would be expected (Figure 6). However, the likelihood of 
becoming wasted increased again in the age group of 47-59 months. Further, 
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children had a higher likelihood of wasting if they had diarrhoea in last two weeks 
preceding the day of survey (odds ratio (OR) = 1.33, confidence interval (CI) = 1.15-
1.54 indicating 33% more likelihood of getting wasted) or if their mother had no 
formal education although, these two covariates did not show any significant 
association in severe wasting model (Figure 6). Whilst the likelihood of a child being 
wasted or severely wasted was lower in children whose mothers were overweight 
(OR = 0.66, CI = 0.57-0.79 meaning 34% less likely in case of wasting and OR = 0.80, CI 
= 0.56-1.14 for severe wasting) and higher when mothers were underweight (OR = 
1.56, CI = 1.44-1.70 for wasting and OR = 1.52, CI = 1.29-1.80 for severe wasting). There 
was little difference in the likelihood of wasting or severe wasting between wealth 
quintile 1 (poorest) and 2 and 3, but the likelihood was lower in quintile 4 and 5 
(highest wealth). In the full models for prevalence of wasting and severe wasting, 
none of the geospatial variables showed a significant relationship with the likelihood 
of wasting and severe wasting. The likelihood of wasting was slightly higher in each 
month of the year except December (OR = 1.04, CI = 0.79-1.35) and peaked in July 
(OR = 2.11, CI = 1.65-2.69) compared to January (reference month). However, the 
likelihood of severe wasting was highest in the month of November (OR = 1.68, CI = 
0.99-2.87) (Figure 6).  
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Figure 6 Bangladesh Wasting and Severe Wasting models. These models were both Logistic regression 
models and the plots show the likelihood of a child being wasted or severely wasted.  

 

 

 

3.2 Ethiopia 
In Ethiopia, the WHZ-Score models indicated a complex but expected relationship 
between child age and wasting. Wasting WHZ-scores were generally lower in 
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children aged 12-23 months compared to 0-12 months indicating that Wasting was 
higher in children between 12 and 23 months than those between 0 and 12 months 
(Figure 7). Wasting was low in children between 24 and 47 months. This corresponds 
to the wider understanding of Wasting for age as it generally starts low during early 
months of life, increases initially after weening and then decreases to almost zero by 
the age of 5. Wasting was higher in children that had suffered diarrhoea in the 2 
weeks preceding the survey, if they were male, if their mother was underweight and if 
their mother had lower education. Results for Ethiopia indicated that the higher the 
mother’s education the higher chances of the child having higher WHZ score 
(Habtamu et al., 2022). Compared to the poorest households (comparison) wasting 
was lower in each wealth quintile.  
 
Among the geospatial variables, the SPEI showed that as the conditions become 
drier the WHZ score decreased whereas the wetter conditions were beneficial for 
WHZ score (Figure 7). None of the other geospatial variables (temperature, soil 
moisture or rainfall) showed any relationship with WHZ score. However, the seasonal 
variation in the WHZ scores is visible when comparing between months of data 
collection. Wasting was highest in August and lowest in November and December in 
Ethiopia. April was used as the reference month for Ethiopia as none of the surveys 
had data for the months of January, February and March indicating the need to 
collect data from these months as well to better understand the patterns of wasting 
in Ethiopia. But the interpretation of the results means that compared to April, 
Wasting is worse in May to August but better (i.e., less wasting) in September, 
October, November, and December. The WHZ score model with only DHS covariates 
without any geospatial covariates is provided in Appendix 6. 
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Figure 7 Ethiopia WHZ score for the best performing model. For the WHZ-score model, a variable was 
associated with increased wasting if it was to the left of the 0.0 line. Wasting is higher the further to the 
left of the plot a variable appears. 

 
The likelihood of being wasted or severely wasted was lower in ages over 11 months 
with the lowest likelihood being in the oldest two age groups which is as would be 
expected (Figure 8). Whilst the likelihood of a child being wasted or severely wasted 
was lower in children whose mothers were overweight (odds ratio (OR) = 0.59, 
confidence interval (CI) = 0.41-0.84 for wasting indicating 41% less likelihood of 
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getting wasted; OR = 0.54, CI = 0.27-0.11 for severe wasting) and higher when 
mothers were underweight (OR = 1.77, CI = 1.61-1.94 for wasting and OR = 1.42, CI = 1.21-
1.68 for severe wasting). There was little difference in the likelihood of wasting or 
severe wasting between wealth quintile 1 (poorest) and 2 and 3, but the likelihood 
was lower in quintile 4 and 5 (highest wealth). Like in the WHZ-Score model, the 
likelihood of a child being wasted or severely wasted was higher when the child had 
suffered from diarrhoea in the 2 weeks preceding the survey (OR = 1.42, CI = 1.28-1.58 
for wasting and OR = 1.50, CI = 1.25-1.80 for severe wasting).  
 
The SPEI was the only geospatial covariate that showed significant association with 
wasting and severe wasting as the likelihood of both wasting and severe wasting 
was higher when drought was worse. The likelihood of wasting was slightly higher in 
each month of the year (OR = 1.02, CI = 0.68-1.53 for May to OR = 1.26, CI = 0.64-2.47 
for December in case of wasting and OR = 0.71, CI = 0.36-1.38 for May to OR = 1.56, CI 
= 0.56-4.34 for December in case of severe wasting) compared to April (reference 
month). However, the likelihood of severe wasting was lower from May to October 
compared to April but is higher in December (Figure 8).  
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Figure 8 Ethiopia Wasting and Severe Wasting models. These models were both Logistic regression 
models and the plots show the likelihood of a child being wasted or severely wasted.  

 

 

3.3 Nigeria 
The full model for WHZ score with only significant covariates included is presented in 
figure 9. The Z-Score models indicated that wasting was higher in children aged 12-
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23 months compared to 0-11 months. However, it was lower in children aged 24 to 59 
months compared with children under 12 months. Wasting was higher in children 
that had suffered diarrhoea in the 2 weeks preceding the survey, if they were male, if 
their mother was underweight. Among the household covariates, the wealth index 
was the most significant covariate affecting the WHZ score in Nigeria. Compared to 
the poorest household (wealth quintile 1 as reference) wasting was lower in 
households from quintile 2 and 3 but it appears that wasting is higher in the 
wealthiest households (quintile 5) compared to the poorest. This was opposite to the 
trend reported for Nigeria DHS-2013 survey only where wasting prevalence was 20.2% 
in the poorest group vs. 14.2% in the richest group (Akombi et al. 2019). This was due 
to small numbers of households being present in the wealthiest quintiles in our 
dataset because we only used rural households/clusters and had removed urban 
clusters from the analysis. The month of data collection also showed a variation in 
WHZ scores such that the WHZ scores decrease in the latter half of the year with the 
worst scores in the month of October.  
 
In the WHZ score model without geospatial variables, mothers’ education had a 
significant association with WHZ scores (Appendix 6). Thus, children born to 
educated mothers have higher WHZ scores (lower wasting). Among the geospatial 
variables included, only SPEI was significantly associated with the WHZ scores where 
wet conditions and moderate to severe drought conditions showed beneficial effects 
in the WHZ scores.  
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Figure 9 Nigeria WHZ score model forest plot. Higher wasting is seen to the left of the 0.0 line and lower 
wasting above. 

 

 

The results of multilevel logistic regression model showed significant association 
between several household and individual level variables (Figure 10) and likelihood of 
wasting and severe wasting among children (<5 years). Among the household 
variables, religion and wealth index showed significant associations with wasting 
and severe wasting. The likelihood of wasting decreased with an increase in wealth 



 

 46 

index quintile until the 4th quintile (odds ratio (OR) = 0.78, confidence interval (CI) = 
0.67-0.92 meaning 28% likelihood of developing wasting and OR = 0.72, CI = 0.56-0.91 
for severe wasting) followed by an increase in likelihood of wasting (OR = 1.00, CI = 
0.79-1.26) and severe wasting (OR = 0.78, CI = 0.54-1.12) among children in 
households belonging to richest 20% of the population sampled. The sex and the age 
of the child was also significantly associated with the likelihood of wasting and 
severe wasting wherein female children were less likely to be wasted (OR = 0.88, CI = 
0.82-0.94) or severely wasted (OR = 0.85, CI = 0.78-0.94). However, wasting/severe 
wasting was less likely in older children. As in the WHZ score model, the BMI of the 
women is associated with the likelihood of wasting/severe wasting demonstrating 
the role of mother’s nutrition in determining children nutritional status. The seasonal 
variation in the wasting and severe wasting can be seen from the analysis with a 
significant increase in the likelihood of wasting/severe wasting from June (OR = 1.74, 
CI = 1.07-2.85 for wasting and OR = 1.90, CI = 0.92-3.90 for severe wasting) compared 
to February (reference month) peaking in October (OR = 3.71, CI = 2.15-6.38 for 
wasting and OR = 5.36, CI = 2.43-11.82 for severe wasting) followed by a decreasing 
trend until December (OR = 3.02, CI = 1.58-5.77 for wasting and OR = 3.88, CI = 1.41-
10.66 for severe wasting). The results also showed increased wasting (OR = 2.56, CI = 
1.71-2.97) and severe wasting (OR = 2.43, CI = 1.63-3.62) prevalence in the year 2013 
followed by a significant reduction in the year 2018 (OR = 0.39, CI = 0.27-0.55 for 
wasting and OR = 0.24, CI = 0.14-0.40 for severe wasting). 
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Figure 10 Nigeria Wasting and Severe Wasting models. These models were both Logistic regression 
models and the plots shows the likelihood of a child being wasted or severely wasted. 

 
3.4 Actual versus Predicted prevalence 
 
We observed a bimodal trend of wasting prevalence in Bangladesh whereby the 
prevalence increased from a low in January to a high in May, followed by a drop in 
June and a higher prevalence again in July which is often similar to the prevalence in 
May. From the second peak in July the fitted/predicted values then drop through to 
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the end of the year (December which often has the lowest wasting prevalence). The 
plot (Figure 11) includes the actual/observed wasting prevalence values that are 
available for Bangladesh, which shows a close match between the model 
predictions and the actual prevalence for most months across the time period.  
 

 

 
Figure 11 Predicted vs actual wasting prevalence for Bangladesh. 

 
 

4. Discussion 
 
Overall, the results indicate that the wasting scores do vary seasonally and that the 
month in which household surveys are conducted does impact the wasting scores 
and prevalence in all countries. The multi-level models for Burkina Faso, Ethiopia and 
Nigeria indicate that models using geospatial variables and survey responses 
perform better than models containing only geospatial variables or only survey 
responses. However, in Bangladesh the models using only geospatial variables have 
the lowest overall AIC/BIC values (Table 7) indicating a better overall model 
performance.  
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The actual vs predicted model for Bangladesh shows that we are able to estimate 
monthly wasting prevalence using the multi-level models that we have created 
(Figure 11). Models for Burkina Faso, Ethiopia and Nigeria are not shown as there was 
not enough data from enough time periods to establish accurate predictions. This 
model and the plot of actual vs predicted wasting scores also establishes that there 
is a wasting season in the data. Combining these with the forest plots for Bangladesh 
(Figure 5 and Figure 6) it is clear that Wasting scores and prevalence vary 
seasonally. For example, the month in which the survey was conducted is 
significantly correlated with wasting score and prevalence. January regularly had 
the lowest wasting values and was held as the reference value. Each other month 
had a higher wasting score, and this can be seen in the forest plots, with the double 
peak being captured in the plot between July and September (Figure 5).  
 
Results for Burkina Faso, Ethiopia and Nigeria are less clear due to the lower amounts 
of DHS data available. However, the forest plots show that for the full models some of 
the seasonal variables are significantly related to wasting values. In Ethiopia and 
Nigeria, the SPEI index indicating extreme drought is significantly associated with 
wasting values. This is expected as rainfed agriculture dominates in these two 
countries and thus extreme drought will affect food production and indirectly it will 
also have an impact in incomes of rural communities reliant on food production. 
Extreme drought will also have a significant impact on child health more generally. 
All combined together this will lead to reduced food security and potentially higher 
levels of child wasting.  
 
The models for Bangladesh revealed two additional unexpected results. The first was 
that wasting was higher in some of the older age groups which is unexpected. The 
usual pattern in wasting is that it is highest shortly after weaning from breast feeding 
and then declines to almost zero by the age of five. However, in Bangladesh the 
models predicted higher rates of wasting in older children (it was increasing 
throughout the age categories) – see figure 5. This is not expected and is counter to 
the evidence that we have in the wider literature. However, it is a feature of the DHS 
data (Table 8) which for Bangladesh shows a more complex pattern than the one 
traditionally seen. The second was that in 2017/2018 the wasting values in 
Bangladesh were unusually high across the country. However, this appears to be 
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related to the extensive flooding across almost all of Bangladesh around this time. 
The Dartmouth flood data confirms this, but the flood data was difficult to 
standardise and use in the modelling for this project. These unexpected results do 
however give us more confidence in the model performance as they are borne out in 
the data and are not artefacts of the modelling.  
  

4.1 Geospatial covariate performances 
 
The only geospatial covariate that appeared to be significantly associated with 
wasting was SPEI. Drought was associated with higher wasting in Ethiopia and Nigeria 
(Dimitrova 2021; Agabiirwe et al. 2022). Drought is not such a problem in Bangladesh 
where floods related to monsoonal rains are more often found to cause localized 
issues around food security. The fact that no other geospatial variables were 
significant in the models could be because SPEI covers aspects of three other 
covariates in that it considers rainfall and temperature within its calculation. 
Furthermore, NDVI and soil moisture will be associated with SPEI values. If SPEI shows 
extreme droughts, then soil moisture will be lower and NDVI will be less green.  
 
The fact that few of the geospatial covariates were significant could be because of 
the spatial resolution of the data. This ranged from 5km to 55.5 km in climatic 
variables and 250 m in the NDVI. NDVI was only available on monthly averages in the 
year of each survey. It may be that more can be done with this variable in the future 
to look at how it is able to capture some of the seasonality in the wasting scores. We 
think there is some evidence that it can be used for this because NDVI was significant 
in most of the geospatial only models, but dropped out of the full models 
presumably because month of the year was added. In future, attention should be 
given to identifying if NDVI can be used as a proxy for month of the year and if so 
then it could be used to help inform the wasting levels. For the other climatic 
covariates (SPEI, soil moisture, temperature, and rainfall) it is likely that the spatial 
resolution of the data was a limiting factor. There is very little evidence that any of 
the geospatial covariates differed when split between wasted and not-wasted 
(Figure 12). The cluster points had a 5km radial buffer zone used to extract the 
climatic variables. But if the data has a spatial resolution of 27 or 55 km then the 
values will be the same for many clusters. This can create statistical artefacts in the 
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data whereby clusters with very different wasting scores are being modelled with 
climatic variables that are the same. In many cases the climatic variables may be 
very similar as they tend not to vary over short distances but in some cases, it may 
have an impact on the ability to model the outcome as you are effectively trying to 
predict different outcomes using the same predictors. 
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Figure 12 Bivariate plots between wasting and geospatial variables 
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4.2 Evidence of Seasonality in the Wasting Data 
 
The increased likelihood of wasting and severe wasting in Bangladeshi children 
during the months of July and August may be attributed to the recurrent monsoon-
induced flooding spanning from June to September. This substantially impacts 
agricultural yields and livelihoods, thereby diminishing the accessibility of 
sustenance and the economic capacity of households, consequently influencing the 
health of children. Furthermore, the escalation in food prices during this period, 
prompted by food scarcity, exacerbates issues related to food insecurity (Food and 
Agricultural Organization of the United Nations [FAO], 2017).  
In Nigeria, the analysis showed an increased likelihood of a child being wasted based 
on the month as wasting was higher through March to July with a peak in October 
followed by a decrease through to December. Evidence suggests a slightly different 
lean period in the North of Nigeria compared to South. For instance, northern areas 
witnessed the lean period in the month of August in the year 2008 while hunger 
period peaks in June in South of Nigeria (Famine Early Warning Systems Network, 
2008). Further, the repeated episodes of climate shocks and conflict aggravate the 
food insecurity in the country (International Food Policy Research Institute, 2019). This 
coupled with increase in food prices during lean season make the food insecurity 
even worse leading to increase in incidence of wasting during this time of the year 
(FAO, 2013). Moreover, household variables such as religion and wealth index of the 
child are the main contributor determining the wasting prevalence at the household 
level. The wealth index again directly influences the purchasing power of the 
household.  
 

4.3 Model Assumptions/limitations 
 
The multi-level model we used assumes linear relationships between the covariates 
and wasting. This is clearly not going to be true of all covariates. For example, soil 
moisture is not linearly related to wasting because there is a threshold at both the 
top and bottom of soil moisture whereby wasting is likely to increase because either 
the soil is too dry to for crops to grow or survive or it is too wet. Our model currently 

https://www.fao.org/3/i7876e/i7876e.pdf
https://www.fao.org/3/i7876e/i7876e.pdf
https://fews.net/sites/default/files/documents/reports/nigeria_2008_06_final.pdf
https://fews.net/sites/default/files/documents/reports/nigeria_2008_06_final.pdf
https://www.ifpri.org/blog/global-report-food-crises-113-million-people-53-countries-experienced-acute-hunger-2018
https://www.fao.org/fileadmin/user_upload/emergencies/docs/2_SITUATION%20UPDATE%20Sahel%2027%2008%202013.pdf
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assumes that as soil moisture increases the relationship with wasting is either 
positive and negative but crucially it does not allow for the fact that eventually the 
relationship will switch and become a problem for wasting when it is either too dry or 
too wet. We, however, fit a linear model for better interpretability of the effect of 
different covariates. 
 
The project overall suffered from using only the DHS data on wasting. All countries 
were selected based on the availability of SMART surveys, MICS and DHS data. 
However, due to formatting differences and a short project time frame only the DHS 
data could be used. This led to a lack of data available for Ethiopia, Nigeria, and 
Burkina Faso. Each of these countries had certain months where no wasting scores 
were available and thus it was not possible to examine seasonal cycles to the same 
level as Bangladesh.  

5. Conclusion 
 
Child wasting varies intra-annually as well as annually and the multi-level models 
show that wasting, severe wasting and wasting z-scores vary by month and on 
clearly visible seasonal cycles. Thus, there does appear to be a wasting season in the 
countries examined in this study. Our models for Bangladesh were able to identify 
this seasonal pattern in Wasting prevalence and could predict the values on a 
monthly basis. Often these patterns are linked to prevailing harvest times in each 
country. Geospatial data on drought and in particular extreme drought was a 
significant predictor of wasting in Ethiopia and Nigeria where water is a limiting 
factor for rainfed agriculture. However, it was less relevant in Bangladesh, we think 
because drought is less of a problem. Overall, this study finds that using DHS data it 
is clear that the wasting scores do vary depending on the month in which the 
household surveys are collected, this variation does appear to have a seasonal 
component and our multi-level logistic regression models were able to estimate 
these variations using a combination of DHS survey responses and geospatial 
covariates extracted from satellite imagery. To establish if monthly wasting score 
adjustment factors can be developed, we recommend further work to combine MICS, 
SMART and other surveys that contain child nutrition data.  
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