الذكاء الاصطناعي التوليدي في عصر "الحقائق البديلة
|
خدمات النشر المفتوح من معهد ماساتشوستس للتكنولوجيا
الأبحاث
Adam Yala, an MIT Abdul Latif Jameel Clinic for Machine Learning in Health (MIT Jameel Clinic) affiliated researcher, co-authors research utilising large language model (LLM)-grounded video diffusion (LVD) to improve spatiotemporal prompts for neural video generation.
From the research team's abstract: 'Text-conditioned diffusion models have emerged as a promising tool for neural video generation. However, current models still struggle with intricate spatiotemporal prompts and often generate restricted or incorrect motion (e.g., even lacking the ability to be prompted for objects moving from left to right). To address these limitations, we introduce LLM-grounded Video Diffusion (LVD). Instead of directly generating videos from the text inputs, LVD first leverages a large language model (LLM) to generate dynamic scene layouts based on the text inputs and subsequently uses the generated layouts to guide a diffusion model for video generation. We show that LLMs are able to understand complex spatiotemporal dynamics from text alone and generate layouts that align closely with both the prompts and the object motion patterns typically observed in the real world. We then propose to guide video diffusion models with these layouts by adjusting the attention maps. Our approach is training-free and can be integrated into any video diffusion model that admits classifier guidance. Our results demonstrate that LVD significantly outperforms its base video diffusion model and several strong baseline methods in faithfully generating videos with the desired attributes and motion patterns.'
|
خدمات النشر المفتوح من معهد ماساتشوستس للتكنولوجيا
|
هارفارد بزنس ريفيو الصحافة
|
اركسيف
|
اركسيف
|
اركسيف
|
bioRxiv
|
الطبيعة
|
اركسيف
|
البنكرياس
|
العلوم
|
أنظمة الخلايا
|
اركسيف
|
الجمعية الإشعاعية لأمريكا الشمالية
|
الطبيعة
|
اركسيف
|
ساينس دايركت
|
PNAS
|
الطبيعة
|
اركسيف
|
مجلة علم الأورام السريري
|
Proceedings of Machine Learning Research
|
Dynamic Ideas
|
فيزيونيت
|
العلوم
|
Little, Brown and Company
|
اركسيف
|
Dynamic Ideas
|
Advances in Neural Information Processing Systems
|
International Journal of Computer Vision