الذكاء الاصطناعي التوليدي في عصر "الحقائق البديلة
|
خدمات النشر المفتوح من معهد ماساتشوستس للتكنولوجيا
الأبحاث
Adaptive optimisation methods, which perform local optimisation with a metric constructed from the history of iterates, are becoming increasingly popular for training deep neural networks. Examples include AdaGrad, RMSProp, and Adam. We show that for simple overparameterized problems, adaptive methods often find drastically different solutions than gradient descent (GD) or stochastic gradient descent (SGD). We construct an illustrative binary classification problem where the data is linearly separable, GD and SGD achieve zero test error, and AdaGrad, Adam, and RMSProp attain test errors arbitrarily close to half. We additionally study the empirical generalisation capability of adaptive methods on several state-of-the-art deep learning models. We observe that the solutions found by adaptive methods generalise worse (often significantly worse) than SGD, even when these solutions have better training performance. These results suggest that practitioners should reconsider the use of adaptive methods to train neural networks.
|
خدمات النشر المفتوح من معهد ماساتشوستس للتكنولوجيا
|
هارفارد بزنس ريفيو الصحافة
|
اركسيف
|
اركسيف
|
bioRxiv
|
الطبيعة
|
اركسيف
|
البنكرياس
|
العلوم
|
أنظمة الخلايا
|
اركسيف
|
الجمعية الإشعاعية لأمريكا الشمالية
|
الطبيعة
|
اركسيف
|
ساينس دايركت
|
PNAS
|
الطبيعة
|
اركسيف
|
مجلة علم الأورام السريري
|
Proceedings of Machine Learning Research
|
Dynamic Ideas
|
العلوم
|
Little, Brown and Company
|
اركسيف
|
Dynamic Ideas
|
Advances in Neural Information Processing Systems
|
International Journal of Computer Vision